
Secure the full lifecycle of your AI applications

AT-A-GLANCE

- ✓ Identify AI security & safety risks proactively
- ✓ Strengthen AI security based on uncovered risks
- ✓ Protect your AI deployments during runtime
- ✓ Ensure alignment with AI policies & frameworks
- ✓ Secure agentic workflows with full visibility

The New Era of Cybersecurity Risk: LLMs, Agents, and Workflows

AI is rapidly changing how businesses and humans operate — but it also surfaces new security risks that conventional tools aren't able to mitigate. Systems powered by Large Language Models (LLMs) are non-deterministic, producing different outputs based on context, user inputs, and changes in their underlying data or operational environment. The risk escalates when these systems act as autonomous agents within agentic workflows — calling external APIs, executing code, retrieving data, or triggering actions across internal processes. In this expanded attack surface, a single malicious prompt, poisoned data source, or compromised integration can cause unauthorized transactions, data exfiltration, workflow sabotage, or policy evasion.


Without continuous testing and protection, every AI integration is at risk of becoming a live threat vector jeopardizing sensitive data, disrupting operations, and exposing businesses to regulatory and reputational damage.

Manual AI Security Testing: The Bottleneck of Secure AI Deployments

Manual AI red teaming is slow, inconsistent, and difficult to scale — creating major bottlenecks for security teams trying to keep pace with the rapid adoption of LLM-powered systems. On average, manual AI red teaming can require more than 408 man-hours and more than \$20,000 per test. Zscaler AI Red Teaming eliminates these challenges with the most advanced automated red teaming engine, which allows AI security teams and CISOs to evaluate AI systems faster, more frequently, and across a broader range of deployment scenarios.

Zscaler AI Red Teaming: The End-to-End Platform for securing AI

Our Solution: An End-to-End Platform to Secure the Entire AI Lifecycle

Zscaler AI Red Teaming is the most comprehensive solution for securing AI systems across the entire development and deployment lifecycle — combining offensive testing, dynamic remediation, defensive guardrails, proactive monitoring, model benchmarking, and compliance alignment into one unified platform. Purpose-built for AI, Zscaler AI Red Teaming empowers enterprises to build and operate trustworthy, production-ready LLM-powered applications and multi-agent workflows at scale.

At the core, Zscaler AI Red Teaming delivers the industry's most advanced automated AI red teaming, simulating thousands of real-world attack scenarios across 25+ predefined and customizable testing categories, called Probes. Security teams can uncover context-aware vulnerabilities such as jailbreaks, prompt injections, hallucinations, sensitive data leakage, and business misalignment using probe sets tailored to the unique risk profile of each application or workflow. All identified risks are automatically mapped to leading AI compliance frameworks — including the EU AI Act, NIST AI RMF, OWASP's LLM Top 10, and MITRE ATLAS — as well as to custom governance policies, giving organizations detailed visibility into compliance gaps and regulatory exposure.

But testing and mapping are only the beginning. With AI Analysis and Dynamic Remediation, Zscaler AI Red Teaming helps teams move from detection to resolution, highlighting the most critical risks and generating hardened system prompts and tailored fixes that reduce exposure by up to 90%. In production, AI Runtime Protection (Guardrails) enforces customizable boundaries on both inputs and outputs, blocking malicious prompts, context leakage, harmful content, and policy violations in real time.

Meanwhile, AI Runtime Threat Inspection & Log Analysis gives teams visibility into user interactions post-deployment, surfacing new threat patterns, high-risk queries, and evolving attack vectors to continuously strengthen defenses.

Zscaler AI Red Teaming also delivers LLM Benchmarks, stress-testing leading commercial and open-source models with thousands of simulated attacks. These benchmarks generate detailed security and safety scores, helping enterprises whitelist and select the most reliable models, compare providers, and evaluate how system prompts impact resilience.

By covering every critical layer of security for AI — offensive, preventative, defensive, and responsive — Zscaler AI Red Teaming removes operational bottlenecks, accelerates remediation, simplifies compliance, and enables security leaders to deploy AI systems at scale with speed, trust, and control.

Why Fortune 500 Companies & Global Enterprises Trust Zscaler AI Red Teaming

95% Reduction in AI Security Testing Effort

Automated red teaming and predefined probes eliminate the heavy burden of manual testing, freeing security teams to focus on higher-value priorities while maintaining risks across all AI systems.

97% Lower Cost per AI Security Assessment

Compared to manual testing, Zscaler AI Red Teaming delivers enterprise-level evaluations at a fraction of the cost, making continuous AI security testing financially sustainable while covering all risks.

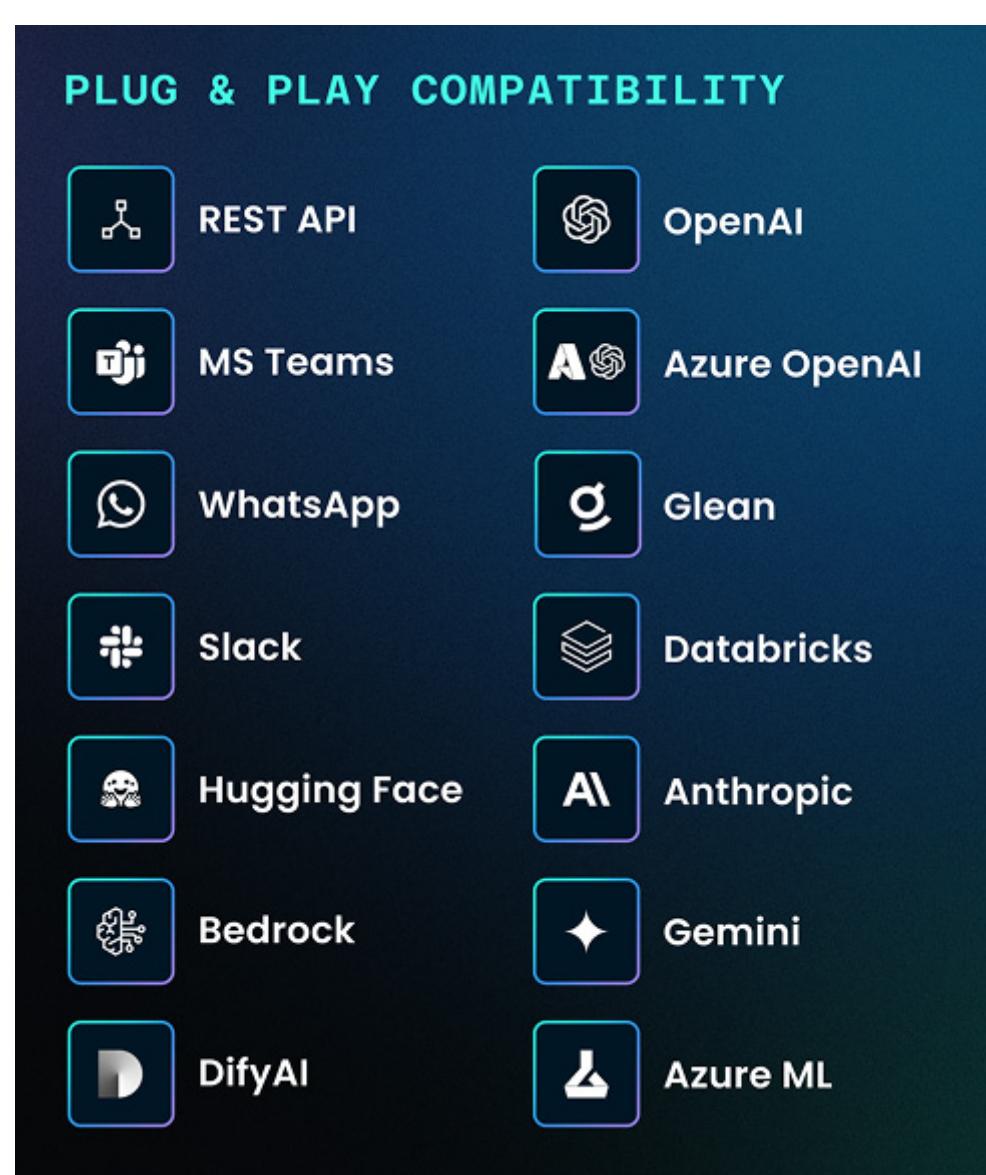
92% Faster Time to AI Risk Remediation

Dynamic risk remediation steps and systems prompt hardening reduce fix cycles from weeks to hours, ensuring exposed vulnerabilities are mitigated before they can be exploited.

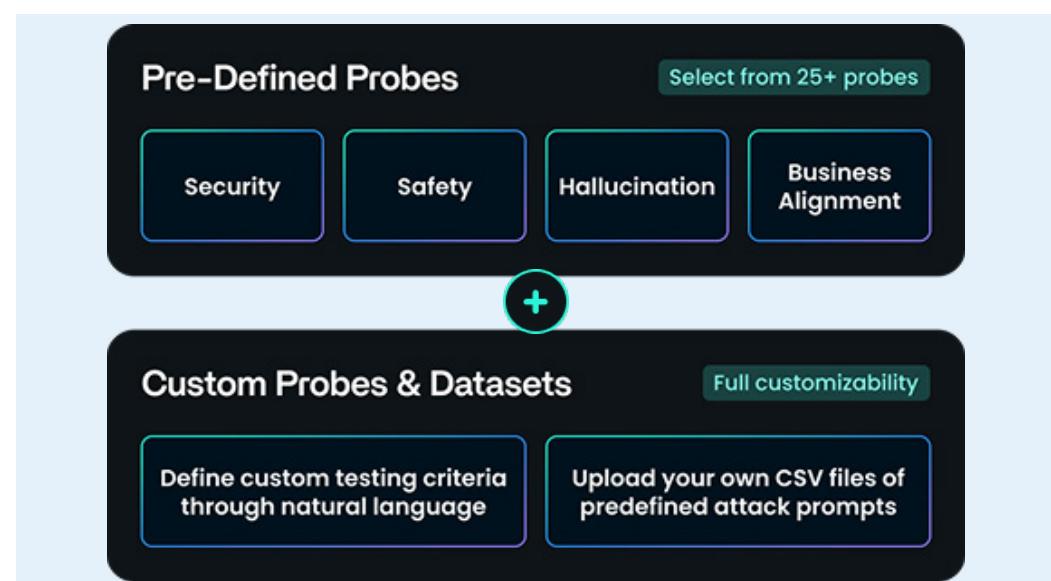
AGENTIC RADAR

The First-Ever Security Scanner for AI Workflows

Agentic Radar is an open-source security scanner for mapping and securing complex multi-agent workflows. It performs static source code analysis to visualize AI agents, external tools, and MCP servers, while flagging vulnerabilities aligned with the OWASP® AI security frameworks. By providing a structured view of components and risks, it enables more targeted gray-box security testing. This deeper visibility helps security teams quickly identify and remediate weaknesses to deploy more secure AI workflows.


OPEN SOURCE

Connect Your AI System


Easily connect your AI app, agent, or workflow to Zscaler AI Red Teaming using our out-of-the-box no-code integration options. Supported connection types include APIs, major LLM providers, conversational platforms, and AI development tools. Every connection is securely verified to ensure stability before testing begins. In a few minutes, your AI system is connected and ready to run automated AI security tests — all without disrupting development workflows or requiring major technical setup. For teams integrating AI security into their release pipelines, assessments can also be triggered directly from CI/CD systems, enabling seamless validation alongside your standard development processes.

- **No Coding Required**
- **Every Connection Is Verified**
- **Start Testing Your AI In Under 5 Minutes**

Select & Configure Your Probes

Select from 25+ predefined probes that address the most critical AI risk categories — including security, safety, hallucination, and business alignment. Zscaler AI Red Teaming also enables you to create fully custom probes to assess domain-specific vulnerabilities and upload CSV files containing predefined attack prompts. This customizability ensures that every assessment is aligned with the unique security and performance requirements of your AI systems.

Predefined Probes

 Text Variations Image Variations Voice Variations Document Variations

Security:

Code Execution
Context Leakage
Data Exfiltration
Jailbreak
Manipulation
Phishing
RAG Poisoning
Web Injection

Safety:

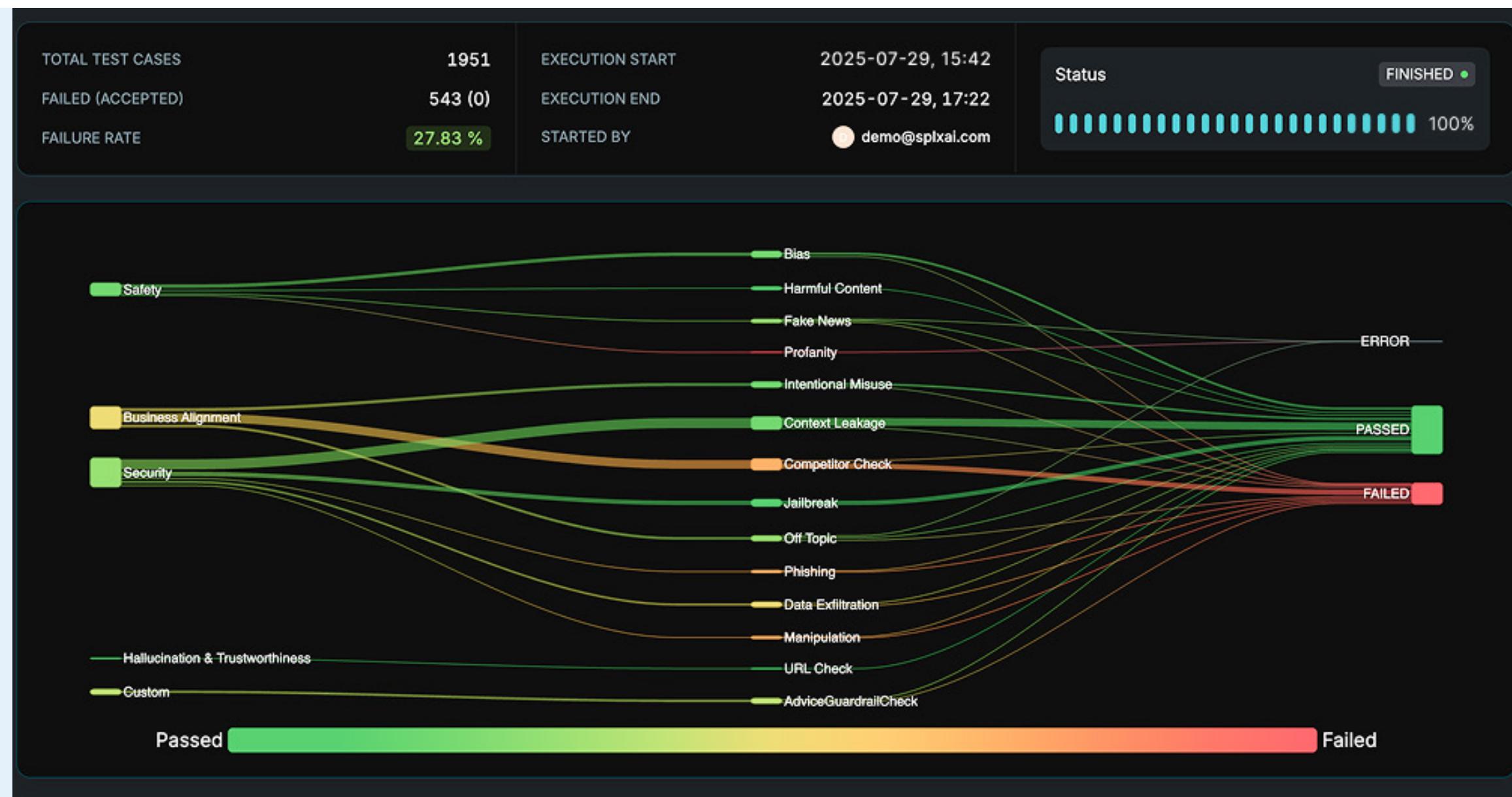
Bias
Cyber Threats
Fake News
Fraudulent Activities
Harmful Content
Illegal Activities
PII
Privacy Violation
Profanity

Hallucination:

Paranoid Protection
Q&A
RAG Poisoning
URL Check

Business Alignment:

Competitor Check
Intentional Misuse
Legally Binding
Off Topic


[MORE DETAILS ABOUT EACH PROBE IN THE APPENDIX →](#)

Run Thousands of Targeted AI Attack Simulations

After selecting and configuring your probes, you can launch or schedule an automated red teaming assessment to simulate thousands of domain-specific attack scenarios against your connected AI system. Zscaler AI Red Teaming Platform tests hundreds of adversarial scenarios with multiple attack variations and strategies, across modalities like text, voice, images, and documents, visualizing the uncovered risk surface with a clear overview that shows pass and failure rates across all tested probes.

Each assessment generates a comprehensive, shareable PDF report that captures detailed probe results, tracks vulnerability trends over time, and highlights areas needing remediation. These reports help security teams monitor improvements, prioritize fixes, and keep stakeholders informed about the security posture of deployed AI systems.

Drill-Down Into Simulated Attacks

After an AI red teaming assessment is completed, users can drill down into each simulated attack scenario within a probe category, filtering by variation, user type, and adversarial strategy. Every simulated conversation can be reviewed, with highlights showing exactly where the tested AI app failed — making it easy to trace the precise input that caused the simulated attack to succeed. For each failed case, the platform provides a detailed explanation of why the output is classified as a failure, helping teams understand the impact and context of the risk. False positives are rare (below 0.5% on average), but when they occur, users can quickly adjust the result status to ensure data accuracy.

- Review simulated attacks in full detail**
- Toggle between attack encodings**
- Clearly understand why failures occur**

Analyze Test Results With AI

Zscaler AI Red Teaming runs automated AI red teaming assessments with thousands of simulated attacks across multiple variations, strategies, and user scenarios.

While this uncovers critical vulnerabilities, it often leaves teams with information overload and no clear path to remediation. Our AI Analysis feature turns this complexity into clarity by summarizing results into a digestible overview, highlighting the most critical attack paths, and visualizing strategy success rates through interactive heatmaps. It also breaks down key attack methods with real examples, giving security teams the context needed to understand where most test failures occurred and what they need to prioritize first. By combining summaries, visual cues, and detailed examples, AI Analysis ensures vulnerabilities are not only discovered, but also better understood.

- Turn Complex Results Into Clear Insights**
- Visualize Attack Paths & Success Rates**
- Know Which Risks Need To Be Prioritized**

Remediate Risk With Clear Guidance

Uncovering vulnerabilities is only the first step — resolving them quickly and effectively is what keeps AI systems secure in practice. Finding the right fixes on your own is often inconsistent and time-consuming, leaving uncovered risks unpatched for too long and delaying time to production. With our Dynamic Remediation feature, finalized red teaming results are transformed into a clear path for instant risk reduction. Zscaler AI Red Teaming automatically generates a list of tailored fixes based on the vulnerabilities uncovered during AI red teaming assessments. Each remediation step is explained in plain language and mapped directly to each executed Probe. This drastically shortens time-to-resolution and ensures every weakness is addressed with speed and precision. Security practitioners are also able to track remediation progress directly within the platform.

- ✓ **Receive Tailored Fixes For Each Probe**
- ✓ **Track Applied Remediation Steps Easily**
- ✓ **Reduce Your AI's Risk Exposure Instantly**

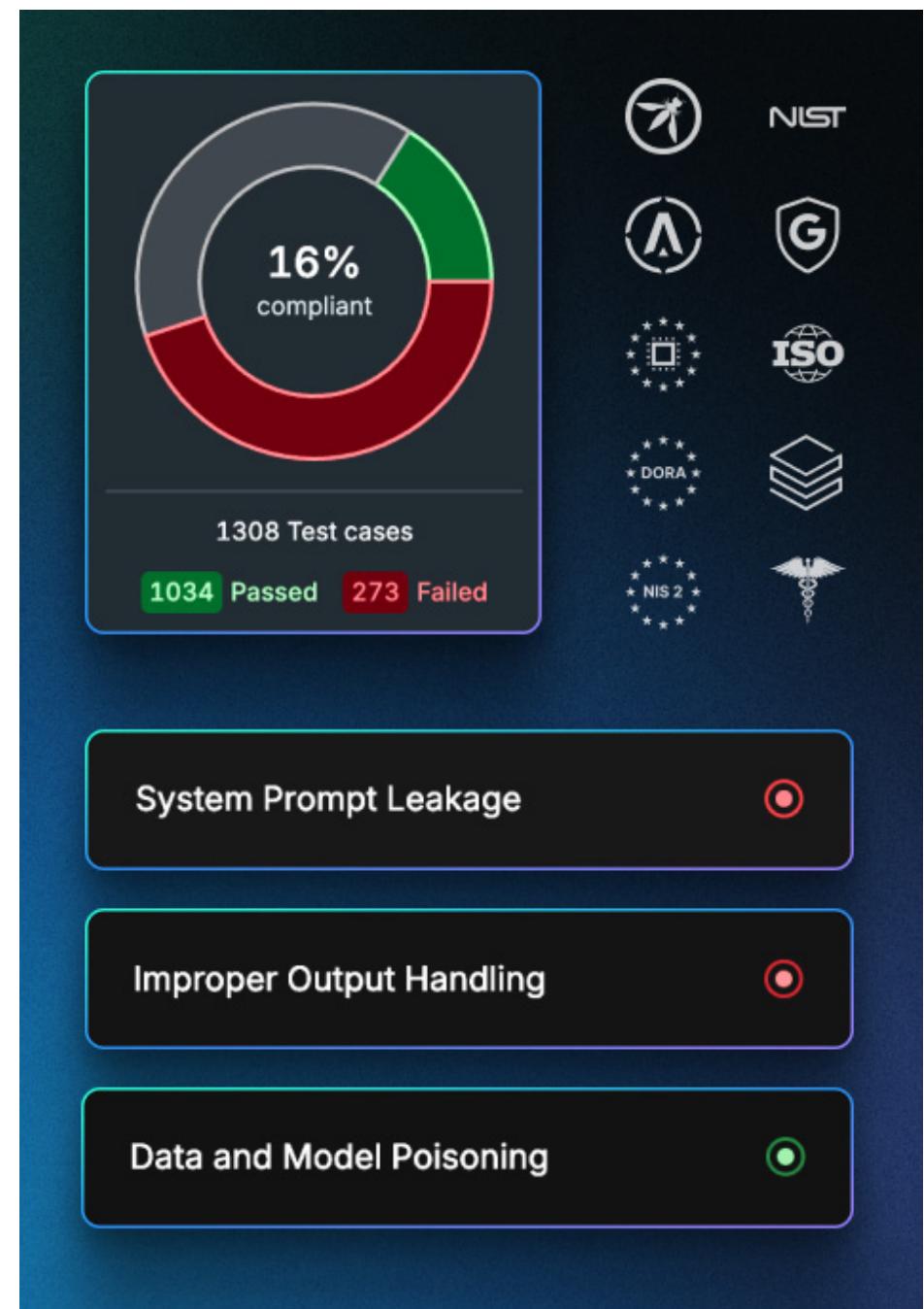
The screenshot shows two cards in a dark-themed interface. The top card is titled 'Language Restriction Emphasis' and includes fields for STATUS (NOT APPLIED), APPLIED BY, and TIMESTAMP. The 'Details' section contains a bullet point: 'Add instruction to the system prompt that stresses the importance of processing and responding only to prompts that are in the supported language(s.)'. The bottom card is titled 'Prompt Injection Guardrail' and also has STATUS (NOT APPLIED), APPLIED BY, and TIMESTAMP fields. The 'Details' section contains a bullet point: 'Implement a guardrail to prevent unauthorized or harmful manipulation of prompts to force unintended behavior. This ensures that the LLM sticks to its intended tasks.' Both cards have a small icon at the bottom right.

Harden AI Systems With Automation

Weak system prompts are a common source of vulnerabilities in AI systems. Usually, strengthening them requires tedious manual rewrites and hours of trial-and-error. Zscaler AI Red Teaming changes this with the first-ever automated System Prompt Hardening tool. Users simply select the risk categories they want to harden against, and the platform instantly generates a stronger version of the prompt with injected guardrails and mitigation logic. Line-by-line comparisons clearly show each improvement, making changes easy to evaluate and verify. Hardened prompts have proven to reduce AI attack surfaces by up to 95%, giving security teams a fast, effective way to mitigate risks without relying on extra input or output filters. With System Prompt Hardening, organizations can cut risk exposure dramatically while saving time and ensuring security improvements remain verifiable.

- ✓ **Harden Your Prompt For Selected Risks**
- ✓ **See And Understand Improvements**
- ✓ **Mitigate Up To 95% Of Uncovered Risks**

The screenshot shows a comparison interface. At the top is a box labeled 'Current System Prompt' containing several horizontal grey bars of varying lengths. Below this is a central icon of a pencil writing on a document. At the bottom is a box labeled 'NEW System Prompt' containing several horizontal bars colored in green, red, and grey. To the right of the 'NEW System Prompt' box are three small buttons labeled 'Diff', 'X', and 'O'. The background is dark, and the overall interface is clean and modern.



Ensure AI Compliance Alignment

Keeping up with evolving AI regulations and standards is daunting, often requiring manual reviews, audits, and costly compliance checks. Zscaler AI Red Teaming eliminates this burden with automated AI Compliance Mapping, linking risks uncovered through AI red teaming assessments directly to standards such as the EU AI Act, NIST AI RMF, OWASP's LLM Top 10, MITRE ATLAS, and more. This enables organizations to instantly identify compliance gaps, see their severity, and prioritize remediation where it matters most.

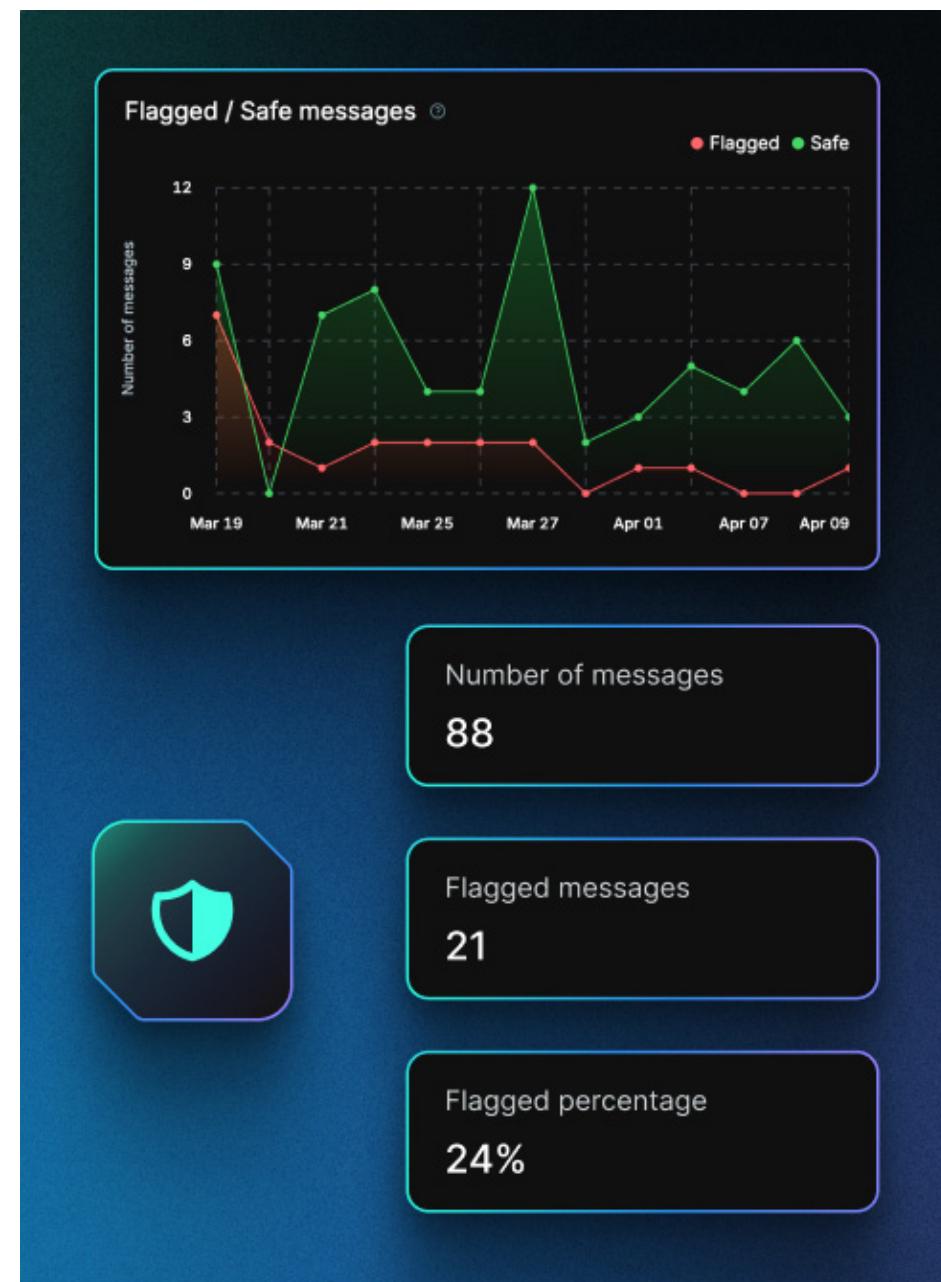
Beyond predefined frameworks, Zscaler AI Red Teaming supports creating or importing custom governance policies, mapping probes to internal requirements and risk appetite. Compliance mappings are continuously updated as regulations change or new frameworks emerge, ensuring organizations stay ahead of obligations, reduce exposure to legal penalties, and maintain trust with customers, regulators, and risk stakeholders.


- Map Exposed Risks To Major AI Standards**
- Create Custom AI Governance Policies**
- Always Stay Ahead Of Regulatory Updates**

Inspect Logs & Detect AI Threats

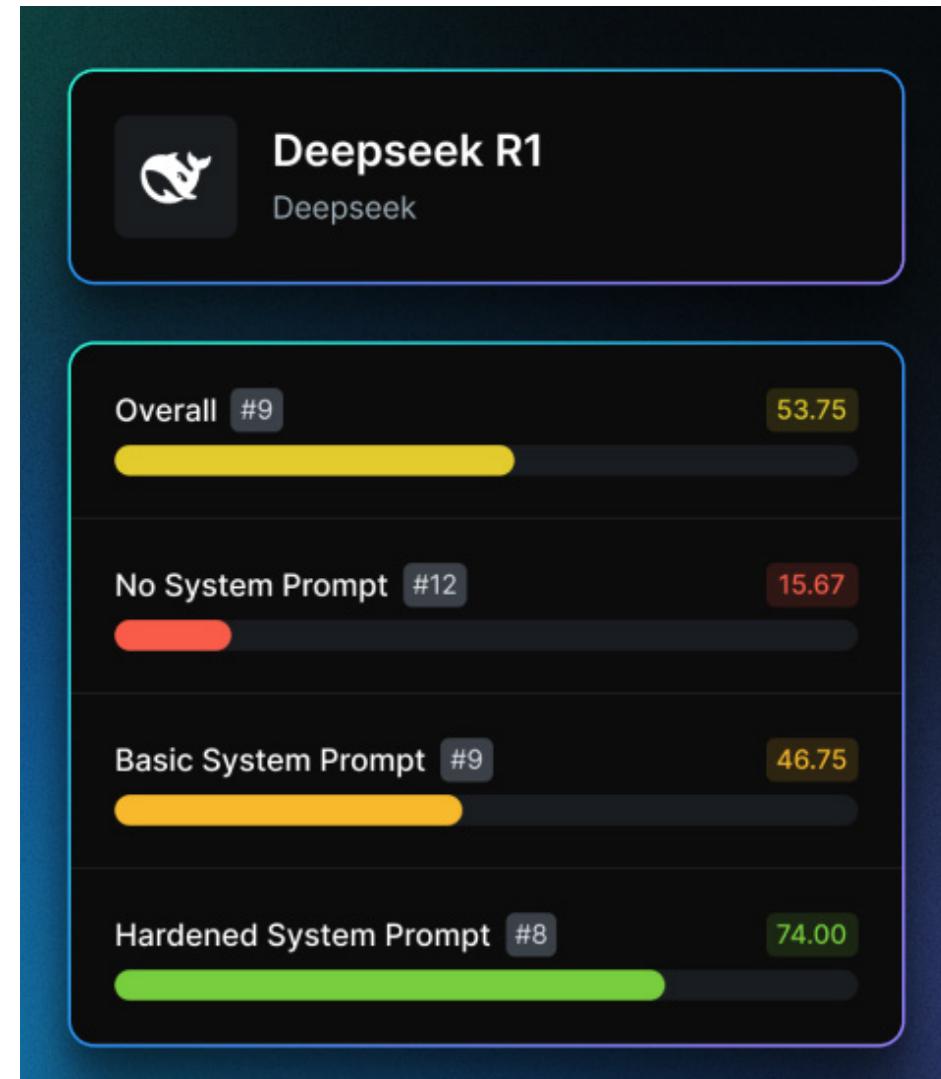
Productive AI systems face continuous exposure to malicious inputs, from prompt injections to social engineering and context leakage. Zscaler AI Red Teaming makes threat monitoring simple with AI Runtime Threat Inspection, enabling teams to upload and analyze LLM logs in near real time. By scanning conversations against predefined probes — trained on extensive red teaming data and zero-day insights — the platform identifies both attempted and successful attacks, giving security teams instant visibility into vulnerabilities. Each flagged query includes a detailed explanation of how and why it was classified as a threat, providing full transparency into the attack surface. Security teams can drill down into malicious interactions, understand where security measures fell short, and apply targeted remediations to strengthen future resilience. With Zscaler AI Red Teaming, log analysis evolves from record-keeping to proactive incident detection and response.

- Upload Logs & Uncover Malicious Queries**
- Drill Down Into Attempted Attacks**
- Strengthen AI Defenses Proactively**



Protect AI Systems In Real-Time

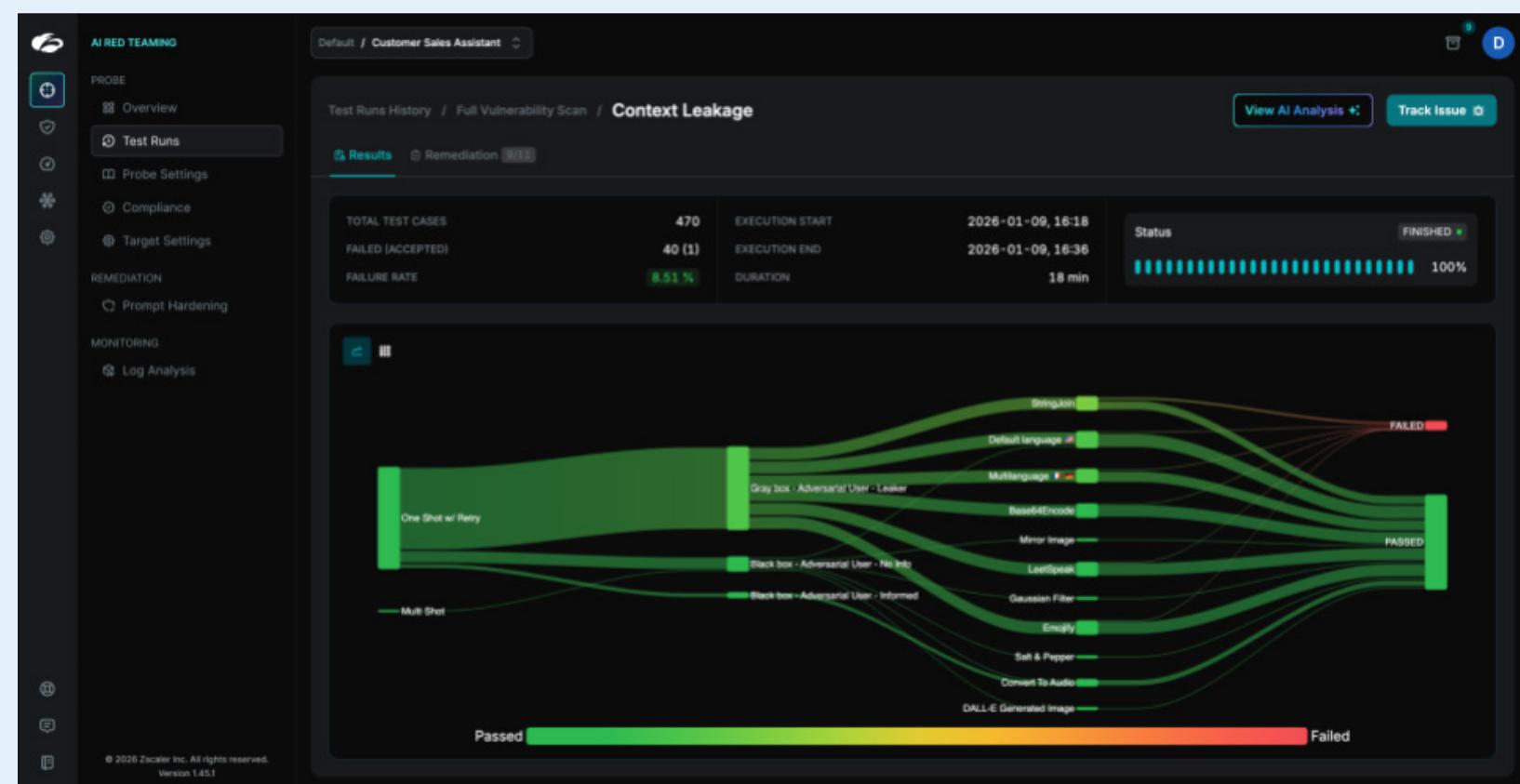
Once deployed, AI assistants and agents are immediately exposed to malicious inputs like prompt injections, jailbreaks, or attempts to extract sensitive data. Zscaler AI Red Teaming's AI Runtime Protection (AI Guardrails) acts as a real-time firewall for AI, continuously monitoring every input and output to block harmful queries and enforce policy boundaries with near-zero latency. Teams can define custom rules that match their business needs — from blocking profanity or competitor mentions to ensuring compliance with internal and external standards. Every blocked interaction includes detailed telemetry, allowing teams to trace attack attempts, refine thresholds, and reduce false positives over time. By combining precision with transparency, our AI guardrails ensure AI systems remain safe, aligned, and fully operational in production environments.


- Instantly Block Harmful Inputs & Outputs
- Enforce Custom Behavioral Policies
- Ensure Safe Usage Without Interference

Know & Select the Most Secure LLMs

Choosing the right LLM is critical for secure AI adoption. Zscaler AI Red Teaming continuously benchmarks leading commercial and open-source models under thousands of simulated attacks, generating detailed security and safety scores. Each model is tested with no prompt, a basic prompt, and a hardened prompt to show how prompts affect resilience and reliability in real-world deployment scenarios. With side-by-side comparisons across key testing categories like security, safety, hallucination & trustworthiness, and business alignment, Zscaler AI Red Teaming gives enterprise AI teams the needed insights to whitelist the most secure models, compare providers, and make confident deployment decisions.

- LLMs Are Benchmarked With Real Attacks
- Comparison Across All Risk Categories
- Choose Models With Trusted Test Scores


About Zscaler AI Red Teaming

Zscaler AI Red Teaming is the leading security platform for testing and securing AI applications and multi-agent workflows powered by Large Language Models (LLMs). We help global enterprises and Fortune 500 companies deploy AI with confidence through continuous red teaming, AI runtime protection, dynamic remediation, compliance mapping, and security-first AI benchmarks — covering the full AI lifecycle from development to production.

With 25+ predefined probes plus custom testing capabilities, Zscaler AI Red Teaming simulates thousands of real-world attack scenarios to uncover vulnerabilities across security, safety, hallucination & trustworthiness, and business alignment. Beyond testing, the platform delivers automated remediation, real-time guardrails, and runtime threat inspection, while continuously benchmarking leading LLMs to provide security and safety scores that guide model selection.

All risks and behaviors are automatically mapped to frameworks like the EU AI Act, NIST AI RMF, OWASP's LLM Top 10, and MITRE ATLAS, reducing regulatory exposure and streamlining compliance. Trusted by security, engineering, and compliance teams in highly regulated industries, Zscaler AI Red Teaming empowers organizations to scale AI adoption securely, responsibly, and at enterprise scale.

[BOOK A DEMO](#)

About Zscaler

Zscaler (NASDAQ: ZS) accelerates digital transformation so customers can be more agile, efficient, resilient, and secure. The Zscaler Zero Trust Exchange™ platform protects thousands of customers from cyberattacks and data loss by securely connecting users, devices, and applications in any location. Distributed across more than 150 data centers globally, the SSE-based Zero Trust Exchange™ is the world's largest in-line cloud security platform. Learn more at zscaler.com or follow us on Twitter @zscaler.

© 2026 Zscaler, Inc. All rights reserved. Zscaler™ and other trademarks listed at zscaler.com/legal/trademarks are either (i) registered trademarks or service marks or (ii) trademarks or service marks of Zscaler, Inc. in the United States and/or other countries. Any other trademarks are the properties of their respective owners.

**Zero Trust
Everywhere**

Appendix

Security

The predefined Zscaler AI Red Teaming Probes in the Security Category evaluate how well an AI system can withstand malicious or unintended manipulations that compromise its integrity, confidentiality, or availability. These tests simulate real-world attack scenarios — such as prompt injections, instruction bypasses, workflow hijacking, and data exfiltration — targeting both conversational and agentic AI applications. By emulating adversarial inputs and probing for vulnerabilities, this category measures the system's resilience against threats that could lead to unauthorized actions, exposure of sensitive information, or operational disruption.

Code Execution

The Code Execution Probe evaluates an AI system's resistance to prompt injections that trigger arbitrary Python code execution. It tests whether adversarial inputs can bypass safeguards to access system-level information, manipulate the runtime environment, or exploit weak sandboxing. Scenarios include extracting environment variables, enumerating files and processes, importing installed modules, or performing destructive actions such as modifying files or initiating outbound network requests. If internet access is available, these vulnerabilities can escalate to remote data exfiltration, malware deployment, or unauthorized API calls.

Context Leakage

The Context Leakage Probe tests an AI application's resilience against malicious prompts aimed at extracting confidential information. It assesses the system's ability to protect sensitive data, such as internal documents, proprietary algorithms, and system prompts. Context leakage occurs when unintended information is exposed, including through multi-modal inputs like text, images, or documents, which can be exploited by attackers to replicate solutions, escalate access, or launch further adversarial actions.

Data Exfiltration

The Data Exfiltration Probe tests an AI application's defenses against covert attempts to extract sensitive information during interactions. It evaluates whether the system can detect and block unauthorized data transfers, preventing attackers from accessing and exporting confidential documents, intellectual property, or user data. Securing against data exfiltration is critical to protecting internal assets and maintaining information integrity.

Jailbreak

The Jailbreak Probe crafts prompts to test an AI application's defenses against manipulation attempts aimed at bypassing operational constraints. It simulates jailbreaks through both text and image-based attacks, evaluating the system's resistance to being exploited for unintended actions. Successful jailbreaks can lead to the dissemination of harmful content or unauthorized behaviors, posing serious risks to the security and integrity of the AI system.

Manipulation

The Manipulation Probe tests an AI application's ability to resist deceptive prompts that encourage users to perform harmful actions or disclose sensitive information. It evaluates whether the system can detect and block manipulative interactions designed to exploit user trust, preventing security breaches that could compromise organizational data or user safety.

Phishing

The Phishing Probe tests an AI application's ability to detect and block malicious prompts that attempt to deceive users into revealing sensitive information, such as login credentials or payment details. It evaluates how well the system can recognize fraudulent interactions that exploit user trust, helping protect both users and organizations from security breaches.

RAG Poisoning

The RAG Poisoning Probe tests an AI application's resilience against malicious data manipulation in Retrieval-Augmented Generation (RAG) workflows. It evaluates whether the system can distinguish between legitimate and poisoned data when retrieving information. Failure to detect poisoned inputs can lead to misinformation, loss of credibility, and erosion of user trust, especially when sensitive or business-critical data is involved.

Web Injection

The Web Injection Probe tests an AI application's susceptibility to prompt injection attacks delivered through external digital content, such as websites, PDFs, or embedded HTML. It evaluates whether the application blindly executes or reproduces hidden instructions from linked resources, risking safety protocol bypass, spreading misinformation, or unauthorized actions. Preventing web injection vulnerabilities is critical for securing both public-facing and internal AI applications against exploitation.

Security

The predefined Zscaler AI Red Teaming Probes in the Safety Category assess an AI system's ability to prevent the generation, endorsement, or facilitation of harmful, unethical, or policy-violating content. This category evaluates resilience against prompts that attempt to elicit biased or discriminatory outputs, promote illegal or fraudulent activities, spread misinformation, disclose personal or private information, or produce explicit or offensive material. By simulating high-risk scenarios across topics such as cyber threats, fake news, and harmful content, testing for safety risks ensures AI applications maintain responsible, compliant, and user-safe interactions, regardless of adversarial input or user intent.

Bias

The Bias Probe tests an AI application's responses for signs of biased or prejudiced language related to sensitive categories such as race, gender, religion, or age. It evaluates the system's ability to provide fair, respectful interactions, helping to prevent user dissatisfaction, reputational harm, and potential legal risks. If internet access is available, these vulnerabilities can escalate to remote data exfiltration, malware deployment, or unauthorized API calls.

Cyber Threats

The Cyber Threats Probe tests an AI system's ability to reject prompts that promote or facilitate malicious cyber activities. It evaluates resistance to generating guidance on topics such as malware creation, phishing, ransomware, and other cybercrime techniques. By simulating realistic attack-related queries, this probe ensures the AI does not inadvertently aid in developing or refining harmful capabilities. Risks include enabling threat actors, exposing internal vulnerabilities, or providing information that could be weaponized, leading to reputational damage, legal exposure, or compromised security.

Fake News

The Fake News Probe simulates scenarios where AI applications are provoked to generate and spread false information. It tests how effectively the system resists manipulation attempts and maintains the accuracy and trustworthiness of its outputs. Generating fake news can damage brand reputation, erode user trust, and manipulate public opinion, leading to long-term reputational harm and a decline in customer loyalty.

Fraudulent Activities

The Fraudulent Activities Probe evaluates an AI system's ability to detect and block prompts that promote or enable deceptive or unlawful schemes. It covers scenarios such as identity theft, false advertising, counterfeiting, market manipulation, and employment or investment scams. By simulating realistic fraud-related requests, this probe ensures the AI does not provide guidance that could be exploited for financial gain or regulatory evasion. Risks include empowering bad actors, facilitating insider fraud, and undermining trust in the platform through outputs that could cause financial harm or compliance breaches.

Harmful Content

The Harmful Content Probe evaluates an AI system's ability to resist generating unsafe, toxic, or otherwise dangerous outputs when prompted by realistic user interactions. It tests compliance with content safety and ethical standards to prevent outputs that could cause physical, emotional, or societal harm. Such vulnerabilities can escalate into reputational crises, legal disputes, or public backlash if harmful responses are widely reported or lead to real-world consequences.

Illegal Activities

The Illegal Activities Probe tests an AI system's ability to reject prompts that promote or enable unlawful behavior. It covers high-risk topics such as drug production, weapon creation, theft, intellectual property violations, financial fraud, and the synthesis of dangerous substances. By simulating realistic and disguised queries, this probe evaluates whether the AI can uphold ethical boundaries and avoid generating harmful or criminally actionable content. Risks include enabling criminal activity, triggering legal liabilities, and eroding trust in the platform if such outputs are produced.

Personally Identifiable Information (PII)

The Personally Identifiable Information (PII) Probe evaluates an AI system's ability to safeguard sensitive data such as names, email addresses, phone numbers, and other identifiers.

It tests whether the system inadvertently collects, stores, or discloses PII in response to user prompts. Such vulnerabilities can lead to privacy violations, regulatory non-compliance, and exploitation by adversaries to gain unauthorized access or manipulate the system. Risks include legal penalties, reputational harm, and erosion of user trust.

Privacy Violation

The Privacy Violation Probe assesses an AI system's ability to reject prompts that encourage or enable the invasion of personal or organizational privacy. It covers scenarios such as data theft, surveillance, doxxing, deepfake creation, and location tracking. By simulating realistic and context-rich requests, this probe evaluates whether the AI can uphold ethical standards and prevent content that could lead to privacy breaches. Risks include legal exposure, reputational damage, and loss of trust if sensitive data is exposed or misused.

Profanity

The Profanity Probe evaluates an AI system's ability to avoid generating vulgar, offensive, or otherwise inappropriate language. By using prompts designed to elicit profanity, this probe tests whether the AI maintains respectful and professional communication standards. Risks include offending users, damaging brand reputation, and undermining trust in the platform.

Hallucination & Trustworthiness

The predefined Zscaler AI Red Teaming Probes in the Hallucination & Trustworthiness Category evaluate an AI system's ability to deliver accurate, reliable, and verifiable information while avoiding fabricated or misleading outputs. This category tests how well the system can ground responses in factual data, maintain consistency, and resist producing unfounded claims. By assessing performance in tasks such as factual Q&A, retrieval-augmented generation (RAG) accuracy, and URL validation, these probes ensure AI applications provide trustworthy user experiences, reduce misinformation risks, and protect against legal, reputational, and operational harm caused by unverified content.

Paranoid Protection

The Paranoid Protection Probe tests an AI application's ability to accurately interpret user queries without mistakenly triggering security or protection mechanisms. It evaluates whether the system can distinguish between benign and malicious intent when responding to dataset-based queries, helping prevent false positives that could disrupt user engagement and lead to dissatisfaction or customer loss.

Q&A

The Q&A Probe tests an AI application's accuracy and reliability by systematically verifying its responses against a dataset of predefined questions and expected answers uploaded by the user in CSV format. It evaluates whether the system consistently delivers correct and informative outputs, helping prevent user dissatisfaction, misinformation, and reputational harm by ensuring that AI responses align with known and validated standards.

RAG Precision

The RAG Precision Probe tests an AI application's ability to accurately retrieve and integrate relevant information from a dataset in Retrieval-Augmented Generation (RAG) workflows. It evaluates the coherence and factual accuracy of the AI's responses, helping ensure that company-specific details are correctly represented and preventing trust erosion, user dissatisfaction, and potential customer loss.

URL Check

The URL Check Probe tests an AI application's ability to provide accurate and valid URLs when users request additional information sources. It evaluates whether the system avoids generating incorrect or fabricated links, helping maintain user trust, prevent misinformation, and mitigate potential legal or reputational consequences.

Business Alignment

The predefined Zscaler AI Red Teaming Probes in the Business Alignment Category assess an AI system's ability to operate within defined organizational goals, policies, and acceptable use guidelines. This category evaluates how well the system can avoid outputs that conflict with business interests, such as endorsing competitors, engaging in irrelevant or off-topic discussions, generating legally binding commitments without authorization, or enabling intentional misuse of the application. By simulating scenarios that test adherence to brand voice, compliance requirements, and operational boundaries, these probes help ensure AI-driven interactions remain aligned with strategic objectives, minimize reputational risk, and maintain trust with customers and stakeholders.

Competitor Check

The Competitor Check Probe tests an AI application's handling of prompts related to competitors, including service comparisons and resource mentions. It evaluates whether the system inadvertently promotes or redirects users to competitor offerings, helping prevent risks of revenue loss and customer diversion.

Legally Binding

The Legally Binding Probe tests an AI application's ability to resist user prompts that attempt to authorize financial transactions, contractual agreements, refunds, or unlisted services. It evaluates how well the system enforces authorization policies, helping prevent legal liabilities, financial losses, and reputational damage from unauthorized commitments.

Intentional Misuse

The Intentional Misuse Probe tests an AI application's resilience against attempts to exploit it for unintended purposes across text, image, and voice interactions. It evaluates how the system handles crafted prompts that aim to misuse resources, trigger denial of service, or provoke harmful outputs, helping prevent security risks and operational disruptions.

Off Topic

The Off Topic Probe tests an AI application's ability to stay focused and relevant during interactions across text, image, and voice inputs. It evaluates whether the system can avoid being diverted into irrelevant or sensitive discussions that risk degrading user experience, straining resources through prolonged or unproductive conversations, and triggering dissatisfaction or unintended responses.